4 research outputs found

    Search-Based Information Systems Migration: Case Studies on Refactoring Model Transformations

    Full text link
    Information systems are built to last for decades; however, the reality suggests otherwise. Companies are often pushed to modernize their systems to reduce costs, meet new policies, improve the security, or to be more competitive. Model-driven engineering (MDE) approaches are used in several successful projects to migrate systems. MDE raises the level of abstraction for complex systems by relying on models as first-class entities. These models are maintained and transformed using model transformations (MT), which are expressed by means of transformation rules to transform models from source to target meta-models. The migration process for information systems may take years for large systems. Thus, many changes are going to be introduced to the transformations to reflect the new business requirements, fix bugs, or to meet the updated metamodels. Therefore, the quality of MT should be continually checked and improved during the evolution process to avoid future technical debts. Most MT programs are written as one large module due to the lack of refactoring/modularization and regression testing tools support. In object-oriented systems, composition and modularization are used to tackle the issues of maintainability and testability. Moreover, refactoring is used to improve the non-functional attributes of the software, making it easier and faster for developers to work and manipulate the code. Thus, we proposed an intelligent computational search approach to automatically modularize MT. Furthermore, we took inspiration from a well-defined quality assessment model for object-oriented design to propose a quality assessment model for MT in particular. The results showed a 45% improvement in the developer鈥檚 speed to detect or fix bugs, and developers made 40% less errors when performing a task with the optimized version. Since refactoring operations changes the transformation, it is important to apply regression testing to check their correctness and robustness. Thus, we proposed a multi-objective test case selection technique to find the best trade-off between coverage and computational cost. Results showed a drastic speed-up of the testing process while still showing a good testing performance. The survey with practitioners highlighted the need of such maintenance and evolution framework to improve the quality and efficiency of the existing migration process.Ph.D.College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttp://deepblue.lib.umich.edu/bitstream/2027.42/149153/1/Bader Alkhazi Final Dissertation.pdfDescription of Bader Alkhazi Final Dissertation.pdf : Restricted to UM users only

    On the Value of Quality Attributes for Refactoring Model Transformations Using a Multi-Objective Algorithm

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152454/1/QMOOD_for_ATL__Copy_.pd

    Model Transformation Modularization as a Many-Objective Optimization Problem

    Get PDF
    Model transformation programs are iteratively refined, restructured, and evolved due to many reasons such as fixing bugs and adapting existing transformation rules to new metamodels version. Thus, modular design is a desirable property for model transformations as it can significantly improve their evolution, comprehensibility, maintainability, reusability, and thus, their overall quality. Although language support for modularization of model transformations is emerging, model transformations are created as monolithic artifacts containing a huge number of rules. To the best of our knowledge, the problem of automatically modularizing model transformation programs was not addressed before in the current literature. These programs written in transformation languages, such as ATL, are implemented as one main module including a huge number of rules. To tackle this problem and improve the quality and maintainability of model transformation programs, we propose an automated search-based approach to modularize model transformations based on higher-order transformations. Their application and execution is guided by our search framework which combines an in-place transformation engine and a search-based algorithm framework. We demonstrate the feasibility of our approach by using ATL as concrete transformation language and NSGA-III as search algorithm to find a trade-off between different well-known conflicting design metrics for the fitness functions to evaluate the generated modularized solutions. To validate our approach, we apply it to a comprehensive dataset of model transformations. As the study shows, ATL transformations can be modularized automatically, efficiently, and effectively by our approach. We found that, on average, the majority of recommended modules, for all the ATL programs, by NSGA-III are considered correct with more than 84% of precision and 86% of recall when compared to manual solutions provided by active developers. The statistical analysis of our experiments over several runs shows that NSGA-III performed significantly better than multi-objective algorithms and random search. We were not able to compare with existing model transformations modularization approaches since our study is the first to address this problem. The software developers considered in our experiments confirm the relevance of the recommended modularization solutions for several maintenance activities based on different scenarios and interviews.Comisi贸n Interministerial de Ciencia y Tecnolog铆a TIN2015-70560-RJunta de Andaluc铆a P12-TIC-186

    Model Transformation Modularization as a Many-Objective Optimization Problem

    No full text
    corecore